Natural* Pest Control in the Home Garden

Why go the natural route?

- Safety
- Sustainability
- Insect resistance
- Cost considerations
 - \$
 - Time
 - Health

Natural Controls

- At least some natural forces act on all organisms, causing populations to rise and fall
- Be aware of the influence of natural forces and whether or not you can harness them to balance the scales in your favor
 - Climate
 - Natural enemies
 - Geography/Environment
 - Sustenance
 - Shelter

Disease Triangle

So I want to go more natural. What are my strategies?

First Thing's First:

Document everything.

Plant/Variety Selection

- Right plant, right place (think of the disease triangle)
 - Stressed plants emit pheromones that attract insect pests
- Some plants resist pest attacks better than others
 - Heirlooms vs hybrids

Timing

 Time plantings so that majority of crop will avoid peak pest infestations

- Spacing
 - Plant strength
 - Airflow/circulation
 - Pathogen dispersal
 - Plant Strength

- Weeds, grass around garden may harbor harmful pests
- Gardens started on formerly turfed area may contain harmful larvae and formidable weeds

- Crop Rotation/Cover Crop
 - Soil health
 - Weed control

Row Covers

Sanitation

- Removal of sick, dying, dead plant material
- Mulch
- Know when to call it quits

Trapping

- · Very practical, just require a threshold
- Traps for wide range of pests available commercially

Scouting

- Not just what you see context is key (disease ▲)
- Inspect transplants at purchase
- Inspect plants regularly **learn** insects, life cycles
- Hand pick pests, don't be afraid to prune
- Tolerate damage, establish threshold
- Look for natural predators
- Learn about natural predators, support them.

Insect Identification

- Where did you find it?
- What time of year is it?
- What color is it?
- Is it's body hard or soft?
- What kind of damage if any?
- What kind of legs, mouth parts, wings or antennae?
- Context!

Virginia Cooperative Extension Home Grounds and Animals Pest Management Guide

- Azadirachtin
 - Derivative of the Neem tree seed kernels (active ingredient)
 - Growth regulator
 - Anti-feeder
 - Repellant
 - Oviposition inhibitor

- Highly versatile, readily obtainable, labeled for nearly all garden pests
- Beetles, aphids, caterpillars, others

- Neem Oil
 - Clarified hydrophobic extract of neem oil
 - · Does not contain azadirachtin
 - Broad spectrum insecticide/fungicide
 - Suffocates and smothers
 - Coverage is crucial
 - Works best on small, soft bodied insects

- Horticultural Oils
 - Function similar to neem oil, suffocate and smother soft bodied insects non-selectively
 - Also serve as fungicides
 - Dormant oil vs. All-seasons (summer) oil

- Insecticidal Soap
 - Damage protective covering of soft bodied insects, causing them to dehydrate
 - Homemade remedies using common hand/dish soaps can cause foliar burns, not recommended

- Hot Pepper Wax
 - Capsaicin material that makes peppers hot
 - Typically derived from cayenne
 - Works as repellant, not an eradicator
 - Can be used indoors and outdoors to repel aphids, mites, thrip, white fly, lace bugs, leaf hoppers, others
 - Also effective for deer, rabbits and squirrels

- Kaolin Clay
 - Non-toxic clay product that coats and disguises plant in white film
 - Preventative
 - Commonly used for pears, apples
 - Known to be effective against Japanese beetles, thrip, leaf hoppers, cucumber beetles and potato beetles on veggies

- Diatomaceous Earth
 - Powder composed of fossilized one-celled organisms called diatoms
 - Microscopic, have razor sharp edges that lacerate insect bodies
 - Controls slugs, millipedes, cockroaches, ants, soft-bodied insects
 - Lethal to honeybees don't apply to crops in flower
 - Prolonged exposure can cause lung, skin irritation
 - Use "Natural" grade

- Pyrethrum
 - Made from flowers of certain species of chrysanthemum
 - Pyrethrins: Insecticidal compounds extracted from Pyrethrum
 - **Pyrethroids**: synthetically produced compounds <u>similar</u> to pyrethrins
 - Contact insecticide, paralyzes but may not kill
 - Often formulated with other insecticides to ensure eradication
 - · Low mammalian toxicity, high toxicity to other insects, aquatic wildlife

- Contain microorganisms
 - · Viruses, bacteria, fungi, nematodes, protozoa
- Low toxicity to animals and humans
- Most have a relatively narrow target range (non-"nuclear"), making them helpful tools to use along side beneficial insects

- Bacillus thuringiensis ("Bt"/ Thuricide)
 - Most widely used microbial insecticide in U.S. (soil dwelling bacterium)
 - Different subspecies effective against different groups of insects and their larvae
 - Generally effective against young larval stages of many insects

 read label!

- Bacillus thuringiensis
 - Must be consumed by target insect to become effective target selection/coverage is key
 - Bacteria paralyzes digestive tract, may parasitize the insect
 - Liquid typically more effective than dust formulations
 - Bt breaks down rapidly in direct sunlight application timing is key
 - Does not kill immediately patience is key

- Bacillus thuringiensis var. kurstaki (Btk)
 - Toxic only to Lepidoptera larvae
 - Effective on common leaf-feeders, vegetable pests, bagworms, tent caterpillars, European corn borer (for now)
 - Surfactant critical for Brassicas

- Bacillus thuringiensis var. israelensis (Bti)
 - · Effective on mosquito, black fly, fungus gnat larvae
 - "Dunk" products
 - Typically, eliminating standing water more effective

- Milky Spore Bacillus popillae, Bacillus lentimorbus (bacterium)
 - Applied to turf, watered so that it penetrates below
 - Controls Japanese beetle larvae, others to lesser extent
 - Bacteria parasitizes after larvae consumes it
 - Best to apply around August
 - Can survive in the soil for many years if larval infestation is high

- Spinosad
 - Chemical compounds derived from soil-dwelling bacteria Saccharopolyspora spinosa
 - Kills via contact and ingestion neural disruptor
 - Fire ants, caterpillars, thrip, leaf miners, some beetles
 - Toxic to bees* careful with timing, target
 - Relatively safe for humans, animals
 - Ornamentals, lawns, veggies

- Beauveria bassiana
 - Fungus that attacks and kills a variety of immature and adult insects
 - Whiteflies, aphids, mites, caterpillars, leaf hoppers, grasshoppers, CO potato beetle, Mexican bean beetle, bark beetles, sod webworms, fire ants, European corn borers, others
 - Harmful to lady beetles, other beneficials
 - Contact is critical in application good coverage is key
 - 3-7 days after application for fungal spores to germinate, penetrate, grow throughout pest and begin killing it

- Nematodes
 - Microscopic worm-like parasites some good, some bad
 - Nematodes we deem beneficial cannot develop inside vertebrates
 - Control of weevils, cutworms, webworms, mole crickets, white grubs, and more
 - Type of nematode depends on target-know what you're buying!
 - Proper environmental conditions must be maintained throughout shipping and storage, application
 - Moisture, high humidity, 55°-90° F (generally)

- Assassin Bug Reduviidae
 - Naturally occurring, about 160 species in North America
 - Most species only have one generation/year (mating in early summer)
 - Aphids, caterpillars, CO potato beetle, Japanese beetles, leaf hoppers, Mexican bean beetle, webworms, tent caterpillars
 - Careful!

- Bean Beetle Parasite Pediobius foveolatus
 - Shipped inside host
 - Adults emerge, lay eggs in host larvae
 - 20-25 wasps/mummy, need about 100 wasps/400 sq. ft. of beans
 - Do not overwinter

- Damsel bug Nabidae
 - Similar to assassin bug, smaller
 - Generalist feeder aphids, leafhoppers, mites, caterpillars
 - Multiple generations per year
 - Plant diversity aids proliferation
 - Not commercially available

- Big-eyed bug Gocoridae
 - Abundant, found in most landscapes, gardens, crops
 - Voracious generalist predators
 - Aphids, caterpillar eggs and larvae, immature bugs, leaf hoppers, spider mites
 - Multiple generations per year, present throughout grow season
 - Plant diversity aids proliferation
 - Not commercially available

- Predacious Stink Bug Pentatomidae
 - Feed on more than 100 garden pest insects
 - Adults and nymphs attack prey larger than themselves
 - CO potato beetle, caterpillars
 - Overwinter in plant debris (year-round ground cover)
 - Spined soldier bug, two-spotted stink bug
 - Some species commercially available

- Syrphid fly larvae Syrphidae
 - AKA Hoverfly
 - Feeds on aphids, mealy bugs, thrip, whiteflies
 - Adult lays eggs near aphid colonies, larvae emerge and feed on aphids – 70-100% control when hoverfly populations are high
 - Not commercially available

- Lady Beetles Hippodamia convergens
 - · Feeds mainly on aphids and other soft-bodied insects like mealybug, spider mite
 - Commonly sold, but mobility makes them not very practical

- Green Lacewing larvae Chrysoperia sp.
 - Hatching larvae will consume anything it encounters
 - "Aphid lions"
 - Aphids, insect eggs, mites, thrip, leafhopper nymphs, small caterpillar larvae
 - Adults not predacious
 - Considered a good alternative to lady beetles, less prone to dispersing

- Predatory Mites Phytoseiulus persimilus
 - not actually insects, belong to the class, Arachnida
 - Occur naturally
 - Widely available commercially in different subspecies with different behavioral traits
 - Become active in spring before spider mite populations
 - Feed on two-spotted spider mite, can also target thrip
 - Many supplement diet with plant pollen, meaning they tend to stay in one place, act as "bodyguards" to a plant

And Speaking of Arachnids...

How could you say no to this face?

- Of over 43,000 species of spider in the world, only a handful pose any danger to humans
- The majority of them hunt smaller insects that humans consider pests

- Trichogramma Wasp Trichogrammatidae
 - Tiny wasp that attacks eggs of hundreds of pest species
 - Cutworms, corn borers, earworms, armyworms, cabbage moths
 - Release time is key
 - Adult lays egg in host egg, larvae and pupa develop there
 - Commercially available, but usually used in conjunction with other control methods/insects
 - Plant diversity encourages populations

- Encarsia Wasp Encyrtidae
 - Used worldwide commercially for whitefly control in greenhouses
 - Will feed on any developmental stage of host except egg
 - Prefer 3rd, 4th whitefly larval instars for oviposition

- Minute Pirate Bug Orius
 - One of the first predators to appear in spring
 - Very active general predators of all life stages of most smaller, soft-bodied pests
 - Aphids, spider mites, thrip, psyllids, whitefly, small caterpillars, insect eggs
 - Can kill up to 80 thrips/day

