Natural* Pest Control in the Home Garden
Why go the natural route?

- Safety
- Sustainability
- Insect resistance
- Cost considerations
 - $
 - Time
 - Health
Natural Controls

- At least some natural forces act on all organisms, causing populations to rise and fall
- Be aware of the influence of natural forces and whether or not you can harness them to balance the scales in your favor
 - Climate
 - Natural enemies
 - Geography/Environment
 - Sustenance
 - Shelter
Disease Triangle

- Pathogen
- Environment
- Host

Disease
So I want to go more natural. What are my strategies?
First Thing’s First:

Document everything.
Plant/Variety Selection

• Right plant, right place (think of the disease triangle)
 • Stressed plants emit pheromones that attract insect pests
• Some plants resist pest attacks better than others
 • Heirlooms vs hybrids
Timing

• Time plantings so that majority of crop will avoid peak pest infestations
Cultural/Mechanical Control

- Spacing
 - Plant strength
 - Airflow/circulation
 - Pathogen dispersal
 - Plant Strength
Cultural/Mechanical Control

- Weeds, grass around garden may harbor harmful pests
- Gardens started on formerly turfed area may contain harmful larvae and formidable weeds
Cultural/Mechanical Control

• Crop Rotation/Cover Crop
 • Soil health
 • Weed control
Cultural/Mechanical Control

• Row Covers
Cultural/Mechanical Control

Sanitation

• Removal of sick, dying, dead plant material
• Mulch
• Know when to call it quits
Trapping

• Very practical, just require a threshold
• Traps for wide range of pests available commercially
Scouting

- Not just what you see – context is key (disease ▲)
- Inspect transplants at purchase
- Inspect plants regularly - learn insects, life cycles
- Hand pick pests, don’t be afraid to prune
- Tolerate damage, establish threshold
- Look for natural predators
- Learn about natural predators, support them.
Insect Identification

• Where did you find it?
• What time of year is it?
• What color is it?
• Is it’s body hard or soft?
• What kind of damage if any?
• What kind of legs, mouth parts, wings or antennae?
• Context!
Abiotic

• Azadirachtin
 • Derivative of the Neem tree seed kernels (active ingredient)
 • Growth regulator
 • Anti-feeder
 • Repellant
 • Oviposition inhibitor

• Highly versatile, readily obtainable, labeled for nearly all garden pests
• Beetles, aphids, caterpillars, others
Abiotic

- Neem Oil
 - Clarified hydrophobic extract of neem oil
 - **Does not contain azadirachtin**
 - Broad spectrum insecticide/fungicide
 - **Suffocates and smothers**
 - Coverage is crucial
 - Works best on small, soft bodied insects
Abiotic

• Horticultural Oils
 • Function similar to neem oil, **suffocate and smother** soft bodied insects non-selectively
 • Also serve as fungicides
 • Dormant oil vs. All-seasons (summer) oil
Abiotic

- Insecticidal Soap
 - Damage protective covering of soft bodied insects, causing them to **dehydrate**
 - Homemade remedies using common hand/dish soaps can cause foliar burns, not recommended
Abiotic

• Hot Pepper Wax
 • Capsaicin – material that makes peppers hot
 • Typically derived from cayenne
 • Works as *repellant*, not an eradicator
 • Can be used indoors and outdoors to repel aphids, mites, thrip, white fly, lace bugs, leaf hoppers, others
 • Also effective for deer, rabbits and squirrels
Abiotic

• Kaolin Clay
 • Non-toxic clay product that *coats and disguises* plant in white film
 • Preventative
 • Commonly used for pears, apples
 • Known to be effective against Japanese beetles, thrip, leaf hoppers, cucumber beetles and potato beetles on veggies
Abiotic

- Diatomaceous Earth
 - Powder composed of fossilized one-celled organisms called diatoms
 - Microscopic, have razor sharp edges that **lacerate insect bodies**
 - Controls slugs, millipedes, cockroaches, ants, soft-bodied insects
 - Lethal to honeybees – don’t apply to crops in flower
 - Prolonged exposure can cause lung, skin irritation
 - Use “Natural” grade
Abiotic

• Pyrethrum
 • Made from flowers of certain species of chrysanthemum
 • Pyrethrins: Insecticidal compounds extracted from Pyrethrum
 • Pyrethroids: synthetically produced compounds similar to pyrethrins
 • Contact insecticide, paralyzes but may not kill
 • Often formulated with other insecticides to ensure eradication
 • Low mammalian toxicity, high toxicity to other insects, aquatic wildlife
Biotic, Microbial

- Contain microorganisms
 - Viruses, bacteria, fungi, nematodes, protozoa
- Low toxicity to animals and humans
- Most have a relatively narrow target range (non-"nuclear"), making them helpful tools to use along side beneficial insects
Biotic, Microbial

- *Bacillus thuringiensis* (“Bt”/ Thuricide)
 - Most widely used microbial insecticide in U.S. (soil dwelling bacterium)
 - Different subspecies effective against different groups of insects and their larvae
 - Generally effective against young larval stages of many insects – read label!
Biotic, Microbial

- *Bacillus thuringiensis*
 - **Must be consumed** by target insect to become effective – target selection/coverage is key
 - Bacteria paralyzes digestive tract, may parasitize the insect
 - Liquid typically more effective than dust formulations
 - *Bt* breaks down rapidly in direct sunlight – application timing is key
 - Does not kill immediately – patience is key
Biotic, Microbial

- *Bacillus thuringiensis* var. *kurstaki* (Btk)
 - Toxic only to Lepidoptera larvae
 - Effective on common leaf-feeders, vegetable pests, bagworms, tent caterpillars, European corn borer (for now)
 - Surfactant critical for Brassicas
Biotic, Microbial

- *Bacillus thuringiensis var. israelensis* (Bti)
 - Effective on mosquito, black fly, fungus gnat larvae
 - “Dunk” products
 - Typically, eliminating standing water more effective
Biotic, Microbial

- Milky Spore – *Bacillus popillae, Bacillus lentimorbus* (bacterium)
 - Applied to turf, watered so that it penetrates below
 - Controls Japanese beetle larvae, others to lesser extent
 - Bacteria parasitizes after larvae consumes it
 - Best to apply around August
 - Can survive in the soil for many years if larval infestation is high
Biotic, Microbial

• Spinosad
 • Chemical compounds derived from soil-dwelling bacteria *Saccharopolyspora spinosa*
 • Kills via contact and ingestion – neural disruptor
 • Fire ants, caterpillars, thrip, leaf miners, some beetles
 • Toxic to bees* - careful with timing, target
 • Relatively safe for humans, animals
 • Ornamentals, lawns, veggies
Biotic, Microbial

• Beauveria bassiana
 • Fungus that attacks and kills a variety of immature and adult insects
 • Whiteflies, aphids, mites, caterpillars, leaf hoppers, grasshoppers, CO potato beetle, Mexican bean beetle, bark beetles, sod webworms, fire ants, European corn borers, others
 • Harmful to lady beetles, other beneficials
 • Contact is critical in application – good coverage is key
 • 3-7 days after application for fungal spores to germinate, penetrate, grow throughout pest and begin killing it
Biotic, Microbial

• Nematodes
 • Microscopic worm-like parasites – some good, some bad
 • Nematodes we deem beneficial cannot develop inside vertebrates
 • Control of weevils, cutworms, webworms, mole crickets, white grubs, and more
 • Type of nematode depends on target—know what you’re buying!
 • Proper environmental conditions must be maintained throughout shipping and storage, application
 • Moisture, high humidity, 55°-90° F (generally)
Beneficial insects

- Assassin Bug – Reduviidae
 - Naturally occurring, about 160 species in North America
 - Most species only have one generation/year (mating in early summer)
 - Aphids, caterpillars, CO potato beetle, Japanese beetles, leaf hoppers, Mexican bean beetle, webworms, tent caterpillars
 - Careful!
Beneficial Insects

• Bean Beetle Parasite - *Pediobius foveolatus*
 • Shipped inside host
 • Adults emerge, lay eggs in host larvae
 • 20-25 wasps/mummy, need about 100 wasps/400 sq. ft. of beans
• Do not overwinter
Beneficial Insects

- Damsel bug – *Nabidae*
 - Similar to assassin bug, smaller
 - Generalist feeder – aphids, leafhoppers, mites, caterpillars
 - Multiple generations per year
 - Plant diversity aids proliferation
 - Not commercially available
Beneficial Insects

- Big-eyed bug – Gocoridae
 - Abundant, found in most landscapes, gardens, crops
 - Voracious generalist predators
 - Aphids, caterpillar eggs and larvae, immature bugs, leaf hoppers, spider mites
 - Multiple generations per year, present throughout grow season
 - Plant diversity aids proliferation
 - Not commercially available
Beneficial Insects

• Predacious Stink Bug – Pentatomidae
 • Feed on more than 100 garden pest insects
 • Adults and nymphs attack prey larger than themselves
 • CO potato beetle, caterpillars
 • Overwinter in plant debris (year-round ground cover)
 • Spined soldier bug, two-spotted stink bug
 • Some species commercially available
Beneficial Insects

- Syrphid fly larvae – *Syrphidae*
 - AKA Hoverfly
 - Feeds on aphids, mealy bugs, thrip, whiteflies
 - Adult lays eggs near aphid colonies, larvae emerge and feed on aphids – 70-100% control when hoverfly populations are high
- Not commercially available
Beneficial Insects

- Lady Beetles – *Hippodamia convergens*
 - Feeds mainly on aphids and other soft-bodied insects like mealybug, spider mite
 - Commonly sold, but mobility makes them not very practical
Beneficial Insects

• Green Lacewing larvae – *Chrysoperia sp.*
 • Hatching larvae will consume anything it encounters
 • “Aphid lions”
 • Aphids, insect eggs, mites, thrip, leafhopper nymphs, small caterpillar larvae
 • Adults not predacious
 • Considered a good alternative to lady beetles, less prone to dispersing
Beneficial Insects

• Predatory Mites – *Phytoseiulus persimilis*
 • not actually insects, belong to the class, Arachnida
 • Occur naturally
 • Widely available commercially in different subspecies with different behavioral traits
 • Become active in spring before spider mite populations
 • Feed on two-spotted spider mite, can also target thrip
 • Many supplement diet with plant pollen, meaning they tend to stay in one place, act as “bodyguards” to a plant
And Speaking of Arachnids...

- How could you say no to this face?

- Of over 43,000 species of spider in the world, only a handful pose any danger to humans

- The majority of them hunt smaller insects that humans consider pests
Beneficial Insects

• Trichogramma Wasp – *Trichogrammatidae*
 • Tiny wasp that attacks eggs of hundreds of pest species
 • Cutworms, corn borers, earworms, armyworms, cabbage moths
 • Release time is key
 • Adult lays egg in host egg, larvae and pupa develop there
 • Commercially available, but usually used in conjunction with other control methods/insects
• Plant diversity encourages populations
Beneficial Insects

- **Encarsia Wasp – Encyrtidae**
 - Used worldwide commercially for whitefly control in greenhouses
 - Will feed on any developmental stage of host except egg
 - Prefer 3rd, 4th whitefly larval instars for oviposition
Beneficial Insects

• Minute Pirate Bug – Orius
 • One of the first predators to appear in spring
 • Very active general predators of all life stages of most smaller, soft-bodied pests
 • Aphids, spider mites, thrip, psyllids, whitefly, small caterpillars, insect eggs
 • Can kill up to 80 thrips/day